Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 334, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664603

RESUMO

BACKGROUND: B-box (BBX) proteins are a type of zinc finger proteins containing one or two B-box domains. They play important roles in development and diverse stress responses of plants, yet their roles in wheat remain unclear. RESULTS: In this study, 96 BBX genes were identified in the wheat genome and classified into five subfamilies. Subcellular localization prediction results showed that 68 TaBBXs were localized in the nucleus. Protein interaction prediction analysis indicated that interaction was one way that these proteins exerted their functions. Promoter analysis indicated that TaBBXs may play important roles in light signal, hormone, and stress responses. qRT-PCR analysis revealed that 14 TaBBXs were highly expressed in seeds compared with other tissues. These were probably involved in seed dormancy and germination, and their expression patterns were investigated during dormancy acquisition and release in the seeds of wheat varieties Jing 411 and Hongmangchun 21, showing significant differences in seed dormancy and germination phenotypes. Subcellular localization analysis confirmed that the three candidates TaBBX2-2 A, TaBBX4-2 A, and TaBBX11-2D were nuclear proteins. Transcriptional self-activation experiments further demonstrated that TaBBX4-2A was transcriptionally active, but TaBBX2-2A and TaBBX11-2D were not. Protein interaction analysis revealed that TaBBX2-2A, TaBBX4-2A, and TaBBX11-2D had no interaction with each other, while TaBBX2-2A and TaBBX11-2D interacted with each other, indicating that TaBBX4-2A may regulate seed dormancy and germination by transcriptional regulation, and TaBBX2-2A and TaBBX11-2D may regulate seed dormancy and germination by forming a homologous complex. CONCLUSIONS: In this study, the wheat BBX gene family was identified and characterized at the genomic level by bioinformatics analysis. These observations provide a theoretical basis for future studies on the functions of BBXs in wheat and other species.


Assuntos
Germinação , Família Multigênica , Dormência de Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/fisiologia , Dormência de Plantas/genética , Germinação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Simulação por Computador , Filogenia
2.
BMC Plant Biol ; 24(1): 318, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654190

RESUMO

BACKGROUND: Class III peroxidases (PODs) perform crucial functions in various developmental processes and responses to biotic and abiotic stresses. However, their roles in wheat seed dormancy (SD) and germination remain elusive. RESULTS: Here, we identified a wheat class III POD gene, named TaPer12-3A, based on transcriptome data and expression analysis. TaPer12-3A showed decreasing and increasing expression trends with SD acquisition and release, respectively. It was highly expressed in wheat seeds and localized in the endoplasmic reticulum and cytoplasm. Germination tests were performed using the transgenic Arabidopsis and rice lines as well as wheat mutant mutagenized with ethyl methane sulfonate (EMS) in Jing 411 (J411) background. These results indicated that TaPer12-3A negatively regulated SD and positively mediated germination. Further studies showed that TaPer12-3A maintained H2O2 homeostasis by scavenging excess H2O2 and participated in the biosynthesis and catabolism pathways of gibberellic acid and abscisic acid to regulate SD and germination. CONCLUSION: These findings not only provide new insights for future functional analysis of TaPer12-3A in regulating wheat SD and germination but also provide a target gene for breeding wheat varieties with high pre-harvest sprouting resistance by gene editing technology.


Assuntos
Germinação , Dormência de Plantas , Triticum , Triticum/genética , Triticum/enzimologia , Triticum/fisiologia , Dormência de Plantas/genética , Germinação/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrogênio/metabolismo , Giberelinas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Peroxidases/genética , Peroxidases/metabolismo , Plantas Geneticamente Modificadas , Ácido Abscísico/metabolismo , Genes de Plantas
3.
Planta ; 259(6): 133, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668881

RESUMO

MAIN CONCLUSION: PlARF2 can positively regulate the seed dormancy in Paeonia lactiflora Pall. and bind the RY cis-element. Auxin, a significant phytohormone influencing seed dormancy, has been demonstrated to be regulated by auxin response factors (ARFs), key transcriptional modulators in the auxin signaling pathway. However, the role of this class of transcription factors (TFs) in perennials with complex seed dormancy mechanisms remains largely unexplored. Here, we cloned and characterized an ARF gene from Paeonia lactiflora, named PlARF2, which exhibited differential expression levels in the seeds during the process of seed dormancy release. The deduced amino acid sequence of PlARF2 had high homology with those of other plants and contained typical conserved Auxin_resp domain of the ARF family. Phylogenetic analysis revealed that PlARF2 was closely related to VvARF3 in Vitis vinifera. The subcellular localization and transcriptional activation assay showed that PlARF2 is a nuclear protein possessing transcriptional activation activity. The expression levels of dormancy-related genes in transgenic callus indicated that PlARF2 was positively correlated with the contents of PlABI3 and PlDOG1. The germination assay showed that PlARF2 promoted seed dormancy. Moreover, TF Centered Yeast one-hybrid assay (TF-Centered Y1H), electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter assay analysis (Dual-Luciferase) provided evidence that PlARF2 can bind to the 'CATGCATG' motif. Collectively, our findings suggest that PlARF2, as TF, could be involved in the regulation of seed dormancy and may act as a repressor of germination.


Assuntos
Regulação da Expressão Gênica de Plantas , Paeonia , Filogenia , Dormência de Plantas , Proteínas de Plantas , Paeonia/genética , Paeonia/fisiologia , Paeonia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dormência de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Germinação/genética , Plantas Geneticamente Modificadas , Sequência de Aminoácidos
4.
Physiol Plant ; 176(2): e14271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566130

RESUMO

Seed dormancy is an important life history state in which intact viable seeds delay or prevent germination under suitable conditions. Ascorbic acid (AsA) acts as a small molecule antioxidant, and breaking seed dormancy and promoting subsequent growth are among its numerous functions. In this study, a germination test using Pyrus betulifolia seeds treated with exogenous AsA or AsA synthesis inhibitor lycorine (Lyc) and water absorption was conducted. The results indicated that AsA released dormancy and increased germination and 20 mmol L-1 AsA promoted cell division, whereas Lyc reduced germination. Seed germination showed typical three phases of water absorption; and seeds at five key time points were sampled for transcriptome analysis. It revealed that multiple pathways were involved in breaking dormancy and promoting germination through transcriptome data, and 12 differentially expressed genes (DEGs) related to the metabolism and signal transduction of abscisic acid (ABA) and gibberellins (GA) were verified by subsequent RT-qPCR. For metabolites, exogenous AsA increased endogenous AsA and GA3 but reduced ABA and the ABA/GA3 ratio. In addition, three genes regulating ABA synthesis were downregulated by AsA, while five genes mediating ABA degradation were upregulated. Taken together, AsA regulates the pathways associated with ABA and GA synthesis, catalysis, and signal transduction, with subsequent reduction in ABA and increase in GA and further the balance of ABA/GA, ultimately releasing dormancy and promoting germination.


Assuntos
Giberelinas , Pyrus , Giberelinas/farmacologia , Giberelinas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Germinação , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Pyrus/metabolismo , Ácido Ascórbico/metabolismo , Dormência de Plantas/genética , Sementes , Água/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612492

RESUMO

The excavation and utilization of dormancy loci in breeding are effective endeavors for enhancing the resistance to pre-harvest sprouting (PHS) of wheat varieties. CH1539 is a wheat breeding line with high-level seed dormancy. To clarify the dormant loci carried by CH1539 and obtain linked molecular markers, in this study, a recombinant inbred line (RIL) population derived from the cross of weak dormant SY95-71 and strong dormant CH1539 was genotyped using the Wheat17K single-nucleotide polymorphism (SNP) array, and a high-density genetic map covering 21 chromosomes and consisting of 2437 SNP markers was constructed. Then, the germination percentage (GP) and germination index (GI) of the seeds from each RIL were estimated. Two QTLs for GP on chromosomes 5A and 6B, and four QTLs for GI on chromosomes 5A, 6B, 6D and 7A were identified. Among them, the QTL on chromosomes 6B controlling both GP and GI, temporarily named QGp/Gi.sxau-6B, is a major QTL for seed dormancy with the maximum phenotypic variance explained of 17.66~34.11%. One PCR-based diagnostic marker Ger6B-3 for QGp/Gi.sxau-6B was developed, and the genetic effect of QGp/Gi.sxau-6B on the RIL population and a set of wheat germplasm comprising 97 accessions was successfully confirmed. QGp/Gi.sxau-6B located in the 28.7~30.9 Mbp physical position is different from all the known dormancy loci on chromosomes 6B, and within the interval, there are 30 high-confidence annotated genes. Our results revealed a novel QTL QGp/Gi.sxau-6B whose CH1539 allele had a strong and broad effect on seed dormancy, which will be useful in further PHS-resistant wheat breeding.


Assuntos
Dormência de Plantas , Locos de Características Quantitativas , Dormência de Plantas/genética , Triticum/genética , Melhoramento Vegetal , Alelos
6.
BMC Plant Biol ; 24(1): 215, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532331

RESUMO

BACKGROUND: Seed dormancy is a biological mechanism that prevents germination until favorable conditions for the subsequent generation of plants are encountered. Therefore, this mechanism must be effectively established during seed maturation. Studies investigating the transcriptome and miRNAome of rice embryos and endosperms at various maturation stages to evaluate seed dormancy are limited. This study aimed to compare the transcriptome and miRNAome of rice seeds during seed maturation. RESULTS: Oryza sativa L. cv. Nipponbare seeds were sampled for embryos and endosperms at three maturation stages: 30, 45, and 60 days after heading (DAH). The pre-harvest sprouting (PHS) assay was conducted to assess the level of dormancy in the seeds at each maturation stage. At 60 DAH, the PHS rate was significantly increased compared to those at 30 and 45 DAH, indicating that the dormancy is broken during the later maturation stage (45 DAH to 60 DAH). However, the largest number of differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) were identified between 30 and 60 DAH in the embryo and endosperm, implying that the gradual changes in genes and miRNAs from 30 to 60 DAH may play a significant role in breaking seed dormancy. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses confirmed that DEGs related to plant hormones were most abundant in the embryo during 45 DAH to 60 DAH and 30 DAH to 60 DAH transitions. Alternatively, most of the DEGs in the endosperm were related to energy and abiotic stress. MapMan analysis and quantitative real-time polymerase chain reaction identified four newly profiled auxin-related genes (OsSAUR6/12/23/25) and one ethylene-related gene (OsERF087), which may be involved in seed dormancy during maturation. Additionally, miRNA target prediction (psRNATarget) and degradome dataset (TarDB) indicated a potential association between osa-miR531b and ethylene biosynthesis gene (OsACO4), along with osa-miR390-5p and the abscisic acid (ABA) exporter-related gene (OsMATE19) as factors involved in seed dormancy. CONCLUSIONS: Analysis of the transcriptome and miRNAome of rice embryos and endosperms during seed maturation provided new insights into seed dormancy, particularly its relationship with plant hormones such as ABA, auxin, and ethylene.


Assuntos
MicroRNAs , Oryza , Dormência de Plantas/genética , Oryza/genética , Transcriptoma , Reguladores de Crescimento de Plantas/metabolismo , Germinação/genética , Sementes/genética , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , MicroRNAs/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Nat Commun ; 15(1): 1134, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326370

RESUMO

Preharvest sprouting (PHS) is a deleterious phenotype that occurs frequently in rice-growing regions where the temperature and precipitation are high. It negatively affects yield, quality, and downstream grain processing. Seed dormancy is a trait related to PHS. Longer seed dormancy is preferred for rice production as it can prevent PHS. Here, we map QTLs associated with rice seed dormancy and clone Seed Dormancy 3.1 (SDR3.1) underlying one major QTL. SDR3.1 encodes a mediator of OsbZIP46 deactivation and degradation (MODD). We show that SDR3.1 negatively regulates seed dormancy by inhibiting the transcriptional activity of ABIs. In addition, we reveal two critical amino acids of SDR3.1 that are critical for the differences in seed dormancy between the Xian/indica and Geng/japonica cultivars. Further, SDR3.1 has been artificially selected during rice domestication. We propose a two-line model for the process of rice seed dormancy domestication from wild rice to modern cultivars. We believe the candidate gene and germplasm studied in this study would be beneficial for the genetic improvement of rice seed dormancy.


Assuntos
Oryza , Dormência de Plantas , Dormência de Plantas/genética , Mapeamento Cromossômico , Oryza/genética , Locos de Características Quantitativas/genética , Fenótipo , Sementes/genética
8.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396922

RESUMO

Potato is an important food crop. After harvest, these tubers will undergo a period of dormancy. Brassinosteroids (BRs) are a new class of plant hormones that regulate plant growth and seed germination. In this study, 500 nM of BR was able to break the dormancy of tubers. Additionally, exogenous BR also upregulated BR signal transduction genes, except for StBIN2. StBIN2 is a negative regulator of BR, but its specific role in tuber dormancy remains unclear. Transgenic methods were used to regulate the expression level of StBIN2 in tubers. It was demonstrated that the overexpression of StBIN2 significantly prolonged tuber dormancy while silencing StBIN2 led to premature sprouting. To further investigate the effect of StBIN2 on tuber dormancy, RNA-Seq was used to analyze the differentially expressed genes in OE-StBIN2, RNAi-StBIN2, and WT tubers. The results showed that StBIN2 upregulated the expression of ABA signal transduction genes but inhibited the expression of lignin synthesis key genes. Meanwhile, it was also found that StBIN2 physically interacted with StSnRK2.2 and StCCJ9. These results indicate that StBIN2 maintains tuber dormancy by mediating ABA signal transduction and lignin synthesis. The findings of this study will help us better understand the molecular mechanisms underlying potato tuber dormancy and provide theoretical support for the development of new varieties using related genes.


Assuntos
Lignina , Solanum tuberosum , Lignina/metabolismo , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo , Tubérculos , Desenvolvimento Vegetal , Solanum tuberosum/genética , Regulação da Expressão Gênica de Plantas , Dormência de Plantas/genética
9.
Plant Physiol ; 194(4): 2449-2471, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38206196

RESUMO

Bud dormancy is a crucial strategy for perennial plants to withstand adverse winter conditions. However, the regulatory mechanism of bud dormancy in tree peony (Paeonia suffruticosa) remains largely unknown. Here, we observed dramatically reduced and increased accumulation of abscisic acid (ABA) and bioactive gibberellins (GAs) GA1 and GA3, respectively, during bud endodormancy release of tree peony under prolonged chilling treatment. An Illumina RNA sequencing study was performed to identify potential genes involved in the bud endodormancy regulation in tree peony. Correlation matrix, principal component, and interaction network analyses identified a downregulated MYB transcription factor gene, PsMYB306, the expression of which positively correlated with 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (PsNCED3) expression. Protein modeling analysis revealed 4 residues within the R2R3 domain of PsMYB306 to possess DNA binding capability. Transcription of PsMYB306 was increased by ABA treatment. Overexpression of PsMYB306 in petunia (Petunia hybrida) inhibited seed germination and plant growth, concomitant with elevated ABA and decreased GA contents. Silencing of PsMYB306 accelerated cold-triggered tree peony bud burst and influenced the production of ABA and GAs and the expression of their biosynthetic genes. ABA application reduced bud dormancy release and transcription of ENT-KAURENOIC ACID OXIDASE 1 (PsKAO1), GA20-OXIDASE 1 (PsGA20ox1), and GA3-OXIDASE 1 (PsGA3ox1) associated with GA biosynthesis in PsMYB306-silenced buds. In vivo and in vitro binding assays confirmed that PsMYB306 specifically transactivated the promoter of PsNCED3. Silencing of PsNCED3 also promoted bud break and growth. Altogether, our findings suggest that PsMYB306 negatively modulates cold-induced bud endodormancy release by regulating ABA production.


Assuntos
Ácido Abscísico , Paeonia , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Paeonia/genética , Paeonia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dormência de Plantas/genética , Regulação da Expressão Gênica de Plantas , Oxirredutases/metabolismo
10.
BMC Plant Biol ; 24(1): 21, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166550

RESUMO

Rapeseed (Brassica napus L.) with short or no dormancy period are easy to germinate before harvest (pre-harvest sprouting, PHS). PHS has seriously decreased seed weight and oil content in B. napus. Short-chain dehydrogenase/ reductase (SDR) genes have been found to related to seed dormancy by promoting ABA biosynthesis in rice and Arabidopsis. In order to clarify whether SDR genes are the key factor of seed dormancy in B. napus, homology sequence blast, protein physicochemical properties, conserved motif, gene structure, cis-acting element, gene expression and variation analysis were conducted in present study. Results shown that 142 BnaSDR genes, unevenly distributed on 19 chromosomes, have been identified in B. napus genome. Among them, four BnaSDR gene clusters present in chromosome A04、A05、C03、C04 were also identified. These 142 BnaSDR genes were divided into four subfamilies on phylogenetic tree. Members of the same subgroup have similar protein characters, conserved motifs, gene structure, cis-acting elements and tissue expression profiles. Specially, the expression levels of genes in subgroup A, B and C were gradually decreased, but increased in subgroup D with the development of seeds. Among seven higher expressed genes in group D, six BnaSDR genes were significantly higher expressed in weak dormancy line than that in nondormancy line. And the significant effects of BnaC01T0313900ZS and BnaC03T0300500ZS variation on seed dormancy were also demonstrated in present study. These findings provide a key information for investigating the function of BnaSDRs on seed dormancy in B. napus.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Dormência de Plantas/genética , Perfilação da Expressão Gênica , Filogenia , Brassica rapa/genética , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Plant J ; 117(3): 909-923, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953711

RESUMO

DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Germinação/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dormência de Plantas/genética , Filogenia , Esporos Fúngicos/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Plant Commun ; 5(2): 100732, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828740

RESUMO

Production of morphologically and physiologically variable seeds is an important strategy that helps plants to survive in unpredictable natural conditions. However, the model plant Arabidopsis thaliana and most agronomically essential crops produce visually homogenous seeds. Using automated phenotype analysis, we observed that small seeds in Arabidopsis tend to have higher primary and secondary dormancy levels than large seeds. Transcriptomic analysis revealed distinct gene expression profiles between large and small seeds. Large seeds have higher expression of translation-related genes implicated in germination competence. By contrast, small seeds have elevated expression of many positive regulators of dormancy, including a key regulator of this process, the DOG1 gene. Differences in DOG1 expression are associated with differential production of its alternative cleavage and polyadenylation isoforms; in small seeds, the proximal poly(A) site is selected, resulting in a short mRNA isoform. Furthermore, single-seed RNA sequencing analysis demonstrated that large seeds resemble DOG1 knockout mutant seeds. Finally, on the single-seed level, expression of genes affected by seed size is correlated with expression of genes that position seeds on the path toward germination. Our results demonstrate an unexpected link between seed size and dormancy phenotypes in a species that produces highly homogenous seed pools, suggesting that the correlation between seed morphology and physiology is more widespread than initially assumed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dormência de Plantas/genética , Germinação/genética , Sementes/genética
13.
J Integr Plant Biol ; 66(1): 36-53, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38108123

RESUMO

Dormancy is an adaptive trait which prevents seeds from germinating under unfavorable environmental conditions. Seeds with weak dormancy undergo pre-harvest sprouting (PHS) which decreases grain yield and quality. Understanding the genetic mechanisms that regulate seed dormancy and resistance to PHS is crucial for ensuring global food security. In this study, we illustrated the function and molecular mechanism of TaSRO1 in the regulation of seed dormancy and PHS resistance by suppressing TaVP1. The tasro1 mutants exhibited strong seed dormancy and enhanced resistance to PHS, whereas the mutants of tavp1 displayed weak dormancy. Genetic evidence has shown that TaVP1 is epistatic to TaSRO1. Biochemical evidence has shown that TaSRO1 interacts with TaVP1 and represses the transcriptional activation of the PHS resistance genes TaPHS1 and TaSdr. Furthermore, TaSRO1 undermines the synergistic activation of TaVP1 and TaABI5 in PHS resistance genes. Finally, we highlight the great potential of tasro1 alleles for breeding elite wheat cultivars that are resistant to PHS.


Assuntos
Dormência de Plantas , Triticum , Dormência de Plantas/genética , Triticum/genética , Germinação/genética , Melhoramento Vegetal , Fenótipo
14.
Theor Appl Genet ; 136(12): 259, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038768

RESUMO

KEY MESSAGE: Seventeen PHS-QTLs and candidate genes were obtained, including eleven major loci, three under multiple environments and two with co-localization by the other mapping methods; The functions of three candidate genes were validated using mutants; nine target proteins and five networks were filtered by joint analysis of GWAS and WGCNA. Seed dormancy (SD) and pre-harvest sprouting (PHS) affect yield, as well as grain and hybrid quality in seed production. Therefore, identification of genetic and regulatory pathways underlying PHS and SD is key to gene function analysis, allelic variation mining and genetic improvement. In this study, 78,360 SNPs by SLAF-seq of 230 maize chromosome segment introgression lines (ILs), PHS under five environments were used to conduct GWAS (genome wide association study) (a threshold of 1/n), and seventeen unreported PHS QTLs were obtained, including eleven QTLs with PVE > 10% and three QTLs under multiple environments. Two QTL loci were co-located between the other two genetic mapping methods. Using differential gene expression analyses at two stages of grain development, gene functional analysis of Arabidopsis mutants, and gene functional analysis in the QTL region, seventeen PHS QTL-linked candidate genes were identified, and their five molecular regulatory networks constructed. Based on the Arabidopsis T-DNA mutations, three candidate genes were shown to regulate for SD and PHS. Meanwhile, using RNA-seq of grain development, the weighted correlation network analysis (WGCNA) was performed, deducing five regulatory pathways and target genes that regulate PHS and SD. Based on the conjoint analysis of GWAS and WGCNA, four pathways, nine target proteins and target genes were revealed, most of which regulate cell wall metabolism, cell proliferation and seed dehydration tolerance. This has important theoretical and practical significance for elucidating the genetic basis of maize PHS and SD, as well as mining of genetic resources and genetic improvement of traits.


Assuntos
Arabidopsis , Dormência de Plantas , Dormência de Plantas/genética , Zea mays/genética , Estudo de Associação Genômica Ampla , Arabidopsis/genética , Mapeamento Cromossômico
15.
Biochem Biophys Res Commun ; 682: 335-342, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37837754

RESUMO

Seed dormancy and germination determine the beginning of the life cycle of plants, and the phytohormone ABA plays a crucial role in regulation of seed dormancy and germination. However, the upstream regulatory mechanism of ABA metabolism during dormancy releasing is still remain elusive. In this paper, we present a novel mechanism of OsNAC2 in controlling ABA metabolism and regulation of seed dormancy. OsNAC2 highly expressed during seed development and germination, and overexpression of OsNAC2 strengthened seed dormancy and suppressed germination. Moreover, exogenous phytohormone treatment showed that OsNAC2 acted upstream of GA signaling and downstream of ABA signaling. Additionally, overexpression of OsNAC2 inhibited ABA degradation and increased ABA content during early germination. Further molecular analysis revealed that OsNAC2 directly bound to the ABA metabolism genes promoter and inhibits their transcription in rice protoplasts. These finding could help us explain the genetic regulation mechanism of ABA metabolism during dormancy release and germination in rice.


Assuntos
Oryza , Dormência de Plantas , Dormência de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Germinação/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Mol Plant ; 16(11): 1743-1758, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37710960

RESUMO

Seeds establish dormancy to delay germination until the arrival of a favorable growing season. In this study, we identify a fate switch comprised of the MKK3-MPK7 kinase cascade and the ethylene response factor ERF4 that is responsible for the seed state transition from dormancy to germination. We show that dormancy-breaking factors activate the MKK3-MPK7 module, which affects the expression of some α-EXPANSIN (EXPA) genes to control seed dormancy. Furthermore, we identify a direct downstream substrate of this module, ERF4, which suppresses the expression of these EXPAs by directly binding to the GCC boxes in their exon regions. The activated MKK3-MPK7 module phosphorylates ERF4, leading to its rapid degradation and thereby releasing its inhibitory effect on the expression of these EXPAs. Collectively, our work identifies a signaling chain consisting of protein phosphorylation, degradation, and gene transcription , by which the germination promoters within the embryo sense and are activated by germination signals from ambient conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Dormência de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Germinação/fisiologia , Sementes/metabolismo , Proteínas Repressoras/metabolismo
17.
Plant Physiol Biochem ; 202: 107923, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549571

RESUMO

Seed dormancy is a critical trait that enhances plant survival by preventing seed germination at the wrong time or under unsuitable conditions. Lack of seed dormancy in rice can lead to pre-harvest sprouting on mother plants leading to reduced yield and seed quality. Although some genes have been identified, knowledge of regulation of seed dormancy is limited. Here, we characterized a weak seed dormancy mutant named weak seed dormancy 1 (wsd1) that showed a higher seed germination percentage than the wild-type following the harvest ripeness. We cloned the WSD1 encoding an aminotransferase protein using a MutMap approach. WSD1 was stably expressed after imbibition and its protein was localized in the endoplasm reticulum. A widely targeted metabolomics assay and amino acid analysis showed that WSD1 had a role in regulating homeostasis of amino acids. PAC treatment and RNA-seq analysis showed that WSD1 regulates seed dormancy by involvement in the GA biosynthesis pathway. GA1 content and expression of GA biosynthesis-related genes were increased in the wsd1 mutant compared with the wild-type. The wsd1 mutant had reduced sensitivity to ABA. Our overall results indicated that WSD1 regulates seed dormancy by balancing the ABA and GA pathways.


Assuntos
Oryza , Dormência de Plantas , Dormência de Plantas/genética , Oryza/metabolismo , Giberelinas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Transaminases/genética , Transaminases/metabolismo , Sementes/metabolismo , Germinação/genética , Regulação da Expressão Gênica de Plantas
18.
Planta ; 258(3): 56, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37522994

RESUMO

MAIN CONCLUSION: Taetr1-1 can promote enhanced seed dormancy and ethylene insensitivity in wheat, indicating a conserved function of ETR1 in regulating seed dormancy. Lots of wheat cultivars have weak dormant seed. Weak seed dormancy can cause pre-harvest sprouting (PHS) in grain which significantly reduces grain yield and quality. The mining of causal genes of PHS resistance will serve to enhance breeding selection and cultivar development. In a previous study in Arabidopsis, we identified reduced dormancy 3 as a loss-of-function mutant of the ethylene receptor 1 (ETR1), which can control seed dormancy through the ERF12-TPL-DOG1 pathway. However, it is unknown whether ETR1 also functions in the regulation of wheat seed dormancy. To identify the regulatory role of ETR1 in wheat, we cloned TaETR1 and overexpressed the gain-of-function mutant Taetr1-1. The result indicated that overexpression of Taetr1-1 can promote enhanced seed dormancy and ethylene insensitivity in wheat. This study contributed to our understanding of the molecular basis for the regulation of wheat PHS resistance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Triticum/genética , Dormência de Plantas/genética , Melhoramento Vegetal , Etilenos
19.
Plant Physiol ; 193(2): 1091-1108, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37418568

RESUMO

FUSCA 3 (FUS3), a seed master regulator, plays critical role in seed dormancy and oil accumulation. However, its downstream regulation mechanisms remain poorly understood. Here, we explored the roles of AINTEGUMENTA-like 6 (AIL6), a seed transcription factor, in these processes. The activation of AIL6 by FUS3 was demonstrated by dual-LUC assay. Seeds of ail6 mutants showed alterations in fatty acid compositions, and both AtAIL6 (AIL6 from Arabidopsis thaliana) and BnaAIL6 (AIL6 from Brassica napus) rescued the phenotype. Over-expression (OE) of AIL6s reversed changes in seed fatty acid composition. Notably, OE lines showed low seed germination rates down to 12% compared to 100% of wild-type Col-0. Transcriptome analysis of the mutant and an OE line indicated widespread expression changes of genes involved in lipid metabolism and phytohormone pathways. In OE mature seeds, GA4 content decreased more than 15-fold, while abscisic acid and indole-3-acetic acid (IAA) contents clearly increased. Exogenous GA3 treatments did not effectively rescue the low germination rate. Nicking seed coats increased germination rates from 25% to nearly 80% while the wild-type rdr6-11 is 100% and 98% respectively, and elongation of storage time also improved seed germination. Furthermore, dormancy imposed by AIL6 was fully released in the della quintuple mutant. Together, our results indicate AIL6 acts as a manager downstream of FUS3 in seed dormancy and lipid metabolism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Dormência de Plantas/genética , Proteínas de Arabidopsis/metabolismo , Giberelinas/metabolismo , Metabolismo dos Lipídeos/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Germinação/fisiologia , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo
20.
Planta ; 258(2): 25, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351659

RESUMO

MAIN CONCLUSION: We showed that wild pea seeds contained a more diverse combination of bioactive GAs and had higher ABA content than domesticated peas. Although the role of abscisic acid (ABA) and gibberellins (GAs) interplay has been extensively studied in Arabidopsis and cereals models, comparatively little is known about the effect of domestication on the level of phytohormones in legume seeds. In legumes, as in other crops, seed dormancy has been largely or entirely removed during domestication. In this study, we have measured the endogenous levels of ABA and GAs comparatively between wild and domesticated pea seeds during their development. We have shown that wild seeds contained more ABA than domesticated ones, which could be important for preparing the seeds for the period of dormancy. ABA was catabolised particularly by an 8´-hydroxylation pathway, and dihydrophaseic acid was the main catabolite in seed coats as well as embryos. Besides, the seed coats of wild and pigmented cultivated genotypes were characterised by a broader spectrum of bioactive GAs compared to non-pigmented domesticated seeds. GAs in both seed coat and embryo were synthesized mainly by a 13-hydroxylation pathway, with GA29 being the most abundant in the seed coat and GA20 in the embryos. Measuring seed water content and water loss indicated domesticated pea seeds´ desiccation was slower than that of wild pea seeds. Altogether, we showed that pea domestication led to a change in bioactive GA composition and a lower ABA content during seed development.


Assuntos
Ácido Abscísico , Arabidopsis , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , /metabolismo , Domesticação , Germinação , Sementes , Dormência de Plantas/genética , Arabidopsis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...